Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Int J Nanomedicine ; 19: 1225-1248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348173

RESUMO

Purpose: Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods: To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results: NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion: Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.


Assuntos
Acne Vulgar , Anti-Infecciosos , Nanoestruturas , Humanos , Timol/farmacologia , Portadores de Fármacos/química , Lipídeos/química , Nanoestruturas/química , Anti-Infecciosos/farmacologia , Géis/química , Tamanho da Partícula
2.
Gels ; 10(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391479

RESUMO

Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies. Moreover, cell viability was studied in HaCat cells, confirming their safety. In order to assess therapeutic efficacy against acne, bacterial reduction capacity and antioxidant properties were assessed. Moreover, the anti-inflammatory and wound-healing abilities of THO-NPs were also confirmed. Additionally, ex vivo antioxidant assessment was carried out using pig skin, demonstrating the suitable antioxidant properties of THO-NPs. Moreover, THO and THO-NPs were dispersed in a gelling system, and stability, rheological properties, and extensibility were assessed. Finally, the biomechanical properties of THO-hydrogel and THO-NP-hydrogel were studied in human volunteers, confirming the suitable activity for the treatment of acne. As a conclusion, THO has been encapsulated into PLGA NPs, and in vitro, ex vivo, and in vivo assessments had been carried out, demonstrating excellent properties for the treatment of inflammatory skin disorders.

3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256253

RESUMO

Rotavirus (RV) infection is a major cause of acute gastroenteritis in children under 5 years old, resulting in elevated mortality rates in low-income countries. The efficacy of anti-RV vaccines is limited in underdeveloped countries, emphasizing the need for novel strategies to boost immunity and alleviate RV-induced diarrhea. This study explores the effectiveness of interventions involving extracellular vesicles (EVs) from probiotic and commensal E. coli in mitigating diarrhea and enhancing immunity in a preclinical model of RV infection in suckling rats. On days 8 and 16 of life, variables related to humoral and cellular immunity and intestinal function/architecture were assessed. Both interventions enhanced humoral (serum immunoglobulins) and cellular (splenic natural killer (NK), cytotoxic T (Tc) and positive T-cell receptor γδ (TCRγδ) cells) immunity against viral infections and downregulated the intestinal serotonin receptor-3 (HTR3). However, certain effects were strain-specific. EcoR12 EVs activated intestinal CD68, TLR2 and IL-12 expression, whereas EcN EVs improved intestinal maturation, barrier properties (goblet cell numbers/mucin 2 expression) and absorptive function (villus length). In conclusion, interventions involving probiotic/microbiota EVs may serve as a safe postbiotic strategy to improve clinical symptoms and immune responses during RV infection in the neonatal period. Furthermore, they could be used as adjuvants to enhance the immunogenicity and efficacy of anti-RV vaccines.


Assuntos
Vesículas Extracelulares , Microbiota , Infecções por Rotavirus , Rotavirus , Vacinas , Criança , Humanos , Animais , Ratos , Pré-Escolar , Animais Recém-Nascidos , Escherichia coli , Diarreia/terapia , Infecções por Rotavirus/terapia
4.
Colloids Surf B Biointerfaces ; 234: 113678, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194839

RESUMO

Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C. Moreover, rheological properties showed that all gels were able to increase the viscosity of TH-NPs with the carbomer gels showing the highest values. Moreover, the observation of carbomer dispersed TH-NPs under electron microscopical techniques showed 3D nanometric cross-linked filaments with the NPs found embedded in the threads. In addition, cytotoxicity studies showed that keratinocyte cells in contact with the formulations obtained cell viability values higher than 70 %. Furthermore, antimicrobial efficacy was assessed against C. acnes and S. epidermidis showing that the formulations eliminated the pathogenic C. acnes but preserved the resident S. epidermidis which contributes towards a healthy skin microbiota. Finally, biomechanical properties of TH-NPs dispersed in carbomer gels in contact with healthy human skin were studied showing that they did not alter skin properties and were able to reduce sebum which is increased in acne vulgaris. As a conclusion, TH-NPs dispersed in semi-solid formulations and, especially in carbomer gels, may constitute a suitable solution for the treatment of acne vulgaris.


Assuntos
Acne Vulgar , Nanopartículas , Humanos , Hidrogéis/química , Timol/farmacologia , Pele , Acne Vulgar/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química
5.
Int J Pharm ; 651: 123732, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142012

RESUMO

Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.


Assuntos
Acne Vulgar , Nanopartículas , Nanoestruturas , Humanos , Timol , Portadores de Fármacos/uso terapêutico , Pele , Acne Vulgar/tratamento farmacológico , Fosfatidilcolinas , Tamanho da Partícula
6.
Pharmaceutics ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140093

RESUMO

Flavanones are natural compounds that display anti-inflammatory activity. The aim of this work was to prepare PLGA nanoparticles (NPs) containing natural flavanones I ((2S)-5,7-dihydroxy-6-methyl-8-(3-methyl-2-buten-1-il)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one) and II (2S)-5,7-dihydroxy-2-(4'-methoxyphenyl)-6-methyl-8-(3-methyl-2-buten-1-yl)-2,3-dihydro-4H-1-Benzopyran-4-one) (NP I and NP II, respectively) so as to evaluate their potential for topical anti-inflammatory ocular therapy. An in silico study was carried out using the Molinspiration® and PASS Online web platforms before evaluating the in vitro release study and the ex vivo porcine cornea and sclera permeation. The HPLC analytical method was also established and validated. Finally, the in vitro anti-inflammatory efficacy of NPs was studied in the HCE-2 model. The flavanones I and II could be released following a kinetic hyperbolic model. Neither of the two NPs was able to permeate through the tissues. NP I and NP II were found to be respectful of any changes in the tissues' morphology, as evidenced by histological studies. In HCE-2 cells, NP I and NP II were not cytotoxic at concentrations up to 25 µM. NP I showed higher anti-inflammatory activity than NP II, being able to significantly reduce IL-8 production in LPS-treated HCE-2 cells. In summary, ocular treatment with NP I and NP II could be used as a promising therapy for the inhibition of ocular inflammation.

7.
Nutrients ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960354

RESUMO

Microbiota-host communication is primarily achieved by secreted factors that can penetrate the mucosal surface, such as extracellular membrane vesicles (EVs). The EVs released by the gut microbiota have been extensively studied in cellular and experimental models of human diseases. However, little is known about their in vivo effects in early life, specifically regarding immune and intestinal maturation. This study aimed to investigate the effects of daily administration of EVs from probiotic and commensal E. coli strains in healthy suckling rats during the first 16 days of life. On days 8 and 16, we assessed various intestinal and systemic variables in relation to animal growth, humoral and cellular immunity, epithelial barrier maturation, and intestinal architecture. On day 16, animals given probiotic/microbiota EVs exhibited higher levels of plasma IgG, IgA, and IgM and a greater proportion of Tc, NK, and NKT cells in the spleen. In the small intestine, EVs increased the villi area and modulated the expression of genes related to immune function, inflammation, and intestinal permeability, shifting towards an anti-inflammatory and barrier protective profile from day 8. In conclusion, interventions involving probiotic/microbiota EVs may represent a safe postbiotic strategy to stimulate immunity and intestinal maturation in early life.


Assuntos
Vesículas Extracelulares , Microbiota , Humanos , Ratos , Animais , Escherichia coli/metabolismo , Intestinos , Mucosa Intestinal , Vesículas Extracelulares/metabolismo
8.
Molecules ; 28(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37570874

RESUMO

Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, α-phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF-α, IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation.


Assuntos
Candidíase , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/química , Antifúngicos/química , Óleos de Plantas/química , Equador , Candida , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Anti-Inflamatórios/farmacologia , Testes de Sensibilidade Microbiana
9.
Nutrients ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299399

RESUMO

Trefoil factor 3 (TFF3) plays a key role in the maintenance and repair of intestinal mucosa. TFF3 expression is upregulated by the microbiota through TLR2. At the posttranscriptional level, TFF3 is downregulated by miR-7-5p. Reduced TFF3 levels have been detected in the damaged tissue of IBD patients. Here, we investigate the regulation of TFF3 expression by microbiota extracellular vesicles (EVs) in LS174T goblet cells using RT-qPCR and inhibitors of the TLR2 or PI3K pathways. To evaluate the subsequent impact on epithelial barrier function, conditioned media from control and vesicle-stimulated LS174T cells were used to treat Caco-2 monolayers. The barrier-strengthening effects were evaluated by analysing the expression and subcellular distribution of tight junction proteins, and the repairing effects were assessed using wound-healing assays. The results showed a differential regulation of TFF3 in LS174T via EVs from the probiotic EcN and the commensal ECOR12. EcN EVs activated the TFF3 production through TLR2 and downregulated miR7-5-p through PI3K. Consistently, high levels of secreted TFF3 reinforced the tight junctions and stimulated wound healing in the Caco-2 cells. ECOR12 EVs did not cause these effects. TFF3 is a potential therapeutic target in IBD. This study contributes to understanding the molecular players (microbiota EVs) connecting gut microbes to health and may help in designing better nutritional interventions based on microbiota bioactive compounds.


Assuntos
Vesículas Extracelulares , Doenças Inflamatórias Intestinais , Humanos , Células Caliciformes/metabolismo , Células CACO-2 , Fator Trefoil-3/genética , Fator Trefoil-3/metabolismo , Fator Trefoil-3/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 2 Toll-Like/metabolismo , Mucosa Intestinal/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Vesículas Extracelulares/metabolismo
10.
Pharmaceutics ; 14(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35631597

RESUMO

The poor water solubility of apremilast (APR) is the main impediment to the penetration of the drug through the skin barrier. The objective of this study was to evaluate the permeability of APR in different solutions enriched with penetration promoters in ex vivo samples of human skin, and additionally assess its tolerance in vivo. To this end, APR solutions with 5% promoter were developed, and the drug's ability to penetrate human abdominal skin samples was evaluated; the coefficients of permeability, cumulated amounts permeated, and flow were some of the parameters evaluated; likewise, the in vitro and in vivo tolerance of the solutions was evaluated. The results obtained showed that the solutions containing squalene as a promoter improved the penetration of APR compared to the other promoters evaluated; in the same way, on an in vitro scale in HaCaT cells, the promoters were not toxic, finding a cell viability greater than 80% at the different dilutions evaluated. In the in vivo tests carried out with the solution that presented the best results (APR-Squalene solution), it was observed that it does not cause irritation or erythema on the skin after its colorimetric and histological evaluation of the dorsal region of rats after its application. Squalene becomes an excellent candidate to improve the permeability of the drug in the case of the development of a topical formulation; in addition, it was confirmed that this penetration enhancer is neither toxic nor irritating when in contact with the skin in in vivo tests.

11.
Nutrients ; 14(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057528

RESUMO

Gut bacteria release extracellular vesicles (BEVs) as an intercellular communication mechanism that primes the host innate immune system. BEVs from E. coli activate dendritic cells (DCs) and subsequent T-cell responses in a strain-specific manner. The specific immunomodulatory effects were, in part, mediated by differential regulation of miRNAs. This study aimed to deepen understanding of the mechanisms of BEVs to drive specific immune responses by analyzing their impact on DC-secreted cytokines and exosomes. DCs were challenged with BEVs from probiotic and commensal E. coli strains. The ability of DC-secreted factors to activate T-cell responses was assessed by cytokine quantification in indirect DCs/naïve CD4+ T-cells co-cultures on Transwell supports. DC-exosomes were characterized in terms of costimulatory molecules and miRNAs cargo. In the absence of direct cellular contacts, DC-secreted factors triggered secretion of effector cytokines by T-cells with the same trend as direct DC/T-cell co-cultures. The main differences between the strains influenced the production of Th1- and Treg-specific cytokines. Exosomes released by BEV-activated DCs were enriched in surface proteins involved in antigen presentation and T-cell activation, but differed in the content of immune-related miRNA, depending on the origin of the BEVs. These differences were consistent with the derived immune responses.


Assuntos
Citocinas/metabolismo , Células Dendríticas/microbiologia , Exossomos/microbiologia , Vesículas Extracelulares/imunologia , Microbioma Gastrointestinal/imunologia , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Comunicação Celular/imunologia , Técnicas de Cocultura , Escherichia coli/imunologia , Exossomos/imunologia , Humanos , Ativação Linfocitária/imunologia , MicroRNAs/metabolismo , Probióticos/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/microbiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia
12.
Biology (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36671740

RESUMO

Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.

13.
J Extracell Vesicles ; 10(13): e12161, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34738337

RESUMO

The intestine is fundamental in controlling human health. Intestinal epithelial and immune cells are continuously exposed to millions of microbes that greatly impact on intestinal epithelial barrier and immune function. This microbial community, known as gut microbiota, is now recognized as an important partner of the human being that actively contribute to essential functions of the intestine but also of distal organs. In the gut ecosystem, bidirectional microbiota-host communication does not involve direct cell contacts. Both microbiota and host-derived extracellular vesicles (EVs) are key players of such interkingdom crosstalk. There is now accumulating body of evidence that bacterial secreted vesicles mediate microbiota functions by transporting and delivering into host cells effector molecules that modulate host signalling pathways and cell processes. Consequently, vesicles released by the gut microbiota may have great influence on health and disease. Here we review current knowledge on microbiota EVs and specifically highlight their role in controlling host metabolism, intestinal barrier integrity and immune training.


Assuntos
Bactérias/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Transdução de Sinais/imunologia , Animais , Bactérias/imunologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Vesículas Extracelulares/imunologia , Homeostase/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia
14.
J Nanobiotechnology ; 19(1): 359, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749747

RESUMO

BACKGROUND: Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. RESULTS: Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around - 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. CONCLUSION: TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment.


Assuntos
Acne Vulgar/microbiologia , Antibacterianos , Propionibacteriaceae/efeitos dos fármacos , Timol , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/microbiologia , Timol/química , Timol/farmacocinética , Timol/farmacologia
15.
Int J Pharm ; 609: 121188, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34655707

RESUMO

Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.


Assuntos
Lactoferrina , Nanopartículas , Administração Oftálmica , Animais , Segmento Anterior do Olho , Disponibilidade Biológica , Oftalmopatias/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Soluções Oftálmicas , Tamanho da Partícula , Coelhos
16.
Pharmaceutics ; 13(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683990

RESUMO

Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.

17.
Pharmaceutics ; 13(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34575577

RESUMO

The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.

18.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445584

RESUMO

There are a large number of remedies in traditional medicine focused on relieving pain and inflammation. Flavanones have been a potential source in the search for leading compounds and biologically active components, and they have been the focus of much research and development in recent years. Eysenhardtia platycarpa is used in traditional medicine for the treatment of kidney diseases, bladder infections, and diabetes mellitus. Many compounds have been isolated from this plant, such as flavones, flavanones, phenolic compounds, triterpenoid acids, chalcones, sugars, and fatty acids, among others. In this paper, natural flavanone 1 (extracted from Eysenhardtia platycarpa) as lead compound and flavanones 1a-1d as its structural analogues were screened for anti-inflammatory activity using Molinspiration® and PASS Online in a computational study. The hydro alcoholic solutions (FS) of flavanones 1, 1a-1d (FS1, FS1a-FS1d) were also assayed to investigate their in vivo anti-inflammatory cutaneous effect using two experimental models, a rat ear edema induced by arachidonic acid (AA) and a mouse ear edema induced by 12-O-tetradecanoylphorbol acetate (TPA). Histological studies and analysis of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 were also assessed in AA-inflamed rat ear tissue. The results showed that the flavanone hydro alcoholic solutions (FS) caused edema inhibition in both evaluated models. This study suggests that the evaluated flavanones will be effective when used in the future in skin pathologies with inflammation, with the results showing 1b and 1d to be the best.


Assuntos
Anti-Inflamatórios/farmacologia , Otopatias/tratamento farmacológico , Edema/tratamento farmacológico , Fabaceae/química , Flavanonas/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Otopatias/patologia , Edema/patologia , Ensaios de Triagem em Larga Escala , Inflamação/patologia , Camundongos , Ratos , Ratos Wistar
19.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672304

RESUMO

Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.


Assuntos
Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/fisiologia , Intestinos/citologia , MicroRNAs/imunologia , Animais , Comunicação Celular , Proliferação de Células , Vesículas Extracelulares/química , Vesículas Extracelulares/classificação , Vesículas Extracelulares/genética , Humanos , Células-Tronco Mesenquimais/citologia
20.
Colloids Surf B Biointerfaces ; 197: 111384, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33113488

RESUMO

Conjugation of cytostatic drugs to nanomaterials seeks to improve their low bioavailability and selectivity to overcome the important associated side effects. In this work, we aimed to synthesize water-soluble gold nanoparticles as transporters for synthetic cyclic peptides with a potential anticancer activity but with a limited bioavailability. The highly water-soluble nanoparticles (2.5 nm diameter gold core) are coated with a mixture of polyethylene glycol linkers, one bearing a terminal hydroxyl group for increasing dispersibility in water, and the second bearing a carboxylic acid group for peptide conjugation through amide bond formation. Peptide-functionalized particles have a 9.7 ± 1.8 nm hydrodynamic diameter and are highly water-soluble and stable in solution for at least one year. The morphology of the gold cores as well as their organic coating was studied using Transmission Electron Microscopy, showing that the attachment of a limited number of peptides per nanoparticle leads to a uneven organic coating of two different thicknesses, one of 2.0 ± 0.6 nm formed by polyethylene glycol linkers, and a second of 3.6 ± 0.5 nm which includes the peptide. GNP significantly enhance the internalization of the cyclic peptide BPC734 in cells as compared to peptide in solution, with improved uptake in cancerous HT29 cells. Cytotoxicity studies show that peptide BPC734 in solution is toxic in the micromolar range, whereas peptide-functionalized particles are toxic at nanomolar peptide concentrations and with a significantly higher toxicity for cancerous cells. All these results, besides the stability and expected passive tumor targeting, make these particles a promising option for improving the bioavailability, efficacy, and selectivity in cancer therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Humanos , Neoplasias/tratamento farmacológico , Peptídeos , Peptídeos Cíclicos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...